当前位置:返回首页 > 公司动态 > 技术文档 >
推荐产品

光氧净化器的工作原理和运行效果

2019-06-04 14:28:14
作者:百瑞兴环保

光氧净化器催化设备在外加电场的作用下,介质放电产生的大量携能电子轰击污染物分子,使其电离、解离和激发,然后便引发了一系列复杂的物理、化学反应,使复杂大分子污染物转变为简单小分子物质,或使物质转变成或低毒低害的物质,从而使污染物得以降解去除。因其电离后产生的电子平均能量在10ev,适当控制反应条件可以实现一般情况下难以实现或速度很慢的化学反应变得。

当废气进入等离子光解一体机净化设备内时,先经过等离子体化学反应过程,即电子先从电场获得能量,通过激发或电离将能量转移到分子或原子中去,获得能量的分子或原子被激发,同时有部分分子被电离,从而成为活性基团;之后这些活性基团与分子或原子、活性基团与活性基团之间相互碰撞后生成稳定产物和热。(在外加电场的作用下,介质放电产生的大量携能电子轰击污染物分子,使其电离、解离和激发,然后便引发了一系列复杂的物理、化学反应,使复杂大分子污染物转变为简单小分子物质,或使物质转变成或低毒低害的物质,从而使污染物得以降解去除。)

光氧净化器废气净化:本设备能去除挥发性物(VOC)、无机物、硫化氢、氨气、硫醇类等主要污染物,以及各种恶臭味,除臭效率可达以上,对于长期弥漫、积累的恶臭、异味,24小时内即可祛除,并且具有杀灭空气中、病毒等各种微生物能力,而且具有明显的作用。无需添加任何物质废气处理是一种干法净化过程,是一种全新的净化过程,运行过程无需添加任何添加剂,不产生废水、废渣,不会导致二次污染。

光氧净化器工作原理:

1、利用的高臭氧UV紫外线光束照射来裂解排放的废气废气,能的处理:硫化氢、甲硫氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯乙烯,硫化物H2S、VOC类,等废气的分子链结构,使或无机高分子废气化合物分子链,在紫外线光束照射下,降解转变成低分子化合物,如CO2、H2O等,从而达到的治理,实现达标排放。

2、利用高臭氧UV紫外线光束分解空气中的氧分子产生游离氧,即活性氧,因游离氧所携正负电子不平衡所以需要与氧分子结合,进而生产臭氧。臭氧对紫外线光束照射分解后的物具有强的氧化作用,对恶臭气体及其它刺激性异味有良好的削除效果。

3、恶臭气体通过废气收集排风设备进入到装有UV光解氧化模块的反应腔后,UV紫外线光束及臭氧对恶臭气体进行协同分解氧化反应,使恶臭气体物质降解转化成低分子化合物、水和二氧化碳,再通过排风管道排出室外。

4、利用UV光束裂解恶臭气体中的分子键,破坏的核酸(DNA),再通过臭氧进行氧化反应,达到脱臭及杀灭的目的。

光氧净化器的运行效果是依靠着以下化学反应的支持来实现的:

1、利用的TiO2二氧反应钛光触媒催化氧反应过滤棉,在UV紫外光的照射下,产生光触催化反应,大地提升和加强了紫外光波的能量聚变,在加地裂解废气和恶臭气味分子的同时,催化产生多的活性氧和臭氧,对废气和恶臭气味进行地催化氧反应分离反应,使其降解转化成低分子化合物、水分子和二氧反应碳,从而达到脱臭及杀灭的目的。

2、除恶臭:能去除挥发性废气(VOCs)及各种恶臭气味,脱臭效率较高可达以上。

3、利用波段(157nm-189nm)的紫外线光束照射废气和恶臭气体,裂解废气和恶臭气体的分子键,瞬间打开和改变其分子结构,破坏其核酸,产生一系列光解裂变反应,重新进行DNA分子排列组合,降解转变为低分子化学物,如CO2二氧反应碳和H2O水分子等物质。

4、利用波段(157nm-189nm)的紫外光波照射分离空气中的氧分子产生游离氧,即活性氧,因游离氧所携正负电子不平衡所以需与氧分子结合,进而产生臭氧);被紫外光波裂解后呈游离状态的污染物分子与臭氧氧反应结合成小分子或低害的化合物。如CO2二氧反应碳分子、H2O水分子等。

光氧净化器使用前的注意事项

1、输入电源与净化器所用电源相符,严禁输入电源与净化器所用电源不符,且净化器箱体接地,以。

2、净化器进风口安装变径导风分流管,使废气平均分布进入净化器的各处理室,提高净化器使用率和处理效果。

3、在安装净化器留有足够空间用来打开净化器的门舱和电控盖,方便维护,检修及清洗。

4、为光氧净化器安装在室外,对净化器的电控电源加盖保护,以防雨水及阳光损坏电控电源而导致发生事故。

5、净化器需拆散搬运安装时,由人员根据原有装配规范操作组装,严禁有杂物或砂尘进入内部处理室,并检查内部件是否牢固。

6、选择净化器安装位置时,要求与污染源保持5米以上距离,抽风机与净化器保持在3米以上距离较为合适,并加设减振套以防影响净化器工作。